Ziftomenib: A Pioneering Menin-MLL PPI Inhibitor
ziftomenib
oral menin-MLL1 inhibitor Ph. I/II candidate in leukemia from HTS and SBDD Leukemia, Sep 23, 2022 Kura Oncology, San Diego, CA
Other molecules you may be interested in
AZ-PRMT5i-1
AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.
ARV-393
Arvinas’ ARV-393 is an orally bioavailable PROTAC that degrades BCL6 via CRBN-mediated ubiquitination and proteasomal degradation intended for the treatment of NHL. At the AACR San Diego 2024 meeting, Arvinas disclosed the structure and discovery story of this molecule, which exhibits first-in-class potential. This article covers the key SAR observations that led to the invention of this orally bioavailable PROTAC®, its performance in a triple-hit, high-grade BCL and R-CHOP-resistant cell line, and why sustaining BCL6 knockdown beyond 24 hours was critical for the success of this program.
STX-478
STX-478 is a wild-type-sparing, oral, CNS-penetrant, novel allosteric inhibitor of mutant PI3Kα (phosphatidylinositol-3 kinase α) targeting a cryptic pocket near the ATP-binding site. PI3Kα plays a central role in many cancers, and has been recently highlighted in coverage of 2021 Molecule of the Year nominee and PI3Kα degrader inavolisib. Currently approved PI3Kα modulators are limited by their off-target activities on WT PI3Kα and other kinases, leading to significant side effects including hyperglycemia and rash.
VVD-130037
KEAP1 inhibition/NRF2 activation has been hotly pursued in recent years for immunology indications; however, in oncology, NRF2 degradation has been posited as a novel therapeutic mechanism for specific cancers. Vividion has already disclosed work on covalent KEAP1 inhibitors, but at the recent ACS Fall 2024 meeting, the structure and discovery story of their clinical oral covalent activator of KEAP1 were disclosed, identified through careful analysis of the data from their inhibitor screen.
BBO-8520
BridgeBio’s BBO-8520 is a selective, covalent KRAS(G12C) inhibitor which differentiates itself from the pack by engaging the (ON) state of the protein, potentially conferring increased clinical benefit in KRAS(G12C)-driven cancers, including overcoming resistance to current treatments. Disclosed at the 2024 AACR Annual Meeting in San Diego, is currently in a Ph. I trial in patients with advanced non-small-cell lung cancer. This article covers the structure, mechanism of action and preclinical efficacy that marks this compound out as one to watch.