drughunter.com
Feb. 13, 2022

MIW815 (ADU-S100)

STING agonist Ph. II candidate for met. H&N cancer from SBDD of endogenous ligand Clin. Cancer Res. Aduro (Chinook Therapeutics)

drughunter.com
Drug Hunter Team
Loading...

twitterlinkedinemail

Other molecules you may be interested in

PLX-4545

PLX-4545 is an oral CRBN-based molecular glue degrader of IKZF2 in Ph. I trials. It potentially addresses anti-tumor immunity suppression within the TME, critical in checkpoint blocker resistance. Tumors use IKZF2 to regulate the function of regulatory T cells and inhibit effector T cells. IKZF2 depletion in regulatory T cells enhances the anti-tumor response. The discovery and structural data of PLX-4545 were presented by Kevin Freeman-Cook at the ACS Fall 2024 First-Time Disclosures session in Denver, CO. We are reporting the discovery story and its potential impact on immuno-oncology.

casdatifan (AB521)

Arcus Biosciences recently disclosed the structure and discovery story of their oral HIF-2α inhibitor casdatifan (AB521) at the ACS Fall 2024 First Time Disclosures session in Denver. Read on to find out how the team overcame serum shifts and metabolism issues to deliver into the clinic what could potentially be a best-in-class compound, superior to the recently approved inhibitor, belzutifan.

vorasidenib

Vorasidenib (AG-881) is a brain-penetrant allosteric inhibitor of mutant isocitrate dehydrogenases 1 and 2 (mIDH1/2) from Agios and Celgene that made headlines summer 2023 due to its stunning efficacy for treatment of glioma in patients with mIDH1/2. This Featured Case Study reviews how it was discovered, how it works, and why it matters.

AZ-PRMT5i-1

AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.

inavolisib

Inavolisib is a PI3Kα isoform-selective kinase inhibitor and monovalent degrader of the mutant p110α catalytic subunit of mutant PI3Kα. The molecule selectively depletes mutant p110α in cancer cells with active RTK (receptor tyrosine kinase) signaling and is in several ongoing or planned Ph. III trials for breast cancer. In October 2024, it received FDA approval for use in combination with palbociclib and fulvestrant to treat adults with endocrine-resistant, PIK3CA-mutated, HR+/HER2- breast cancer. This article explains how it works, how it was discovered, and why it matters.