GSK232: A Potent and Selective CECR2 Bromodomain Inhibitor
GSK232
potent, selective CECR2 bromodomain inh. cell permeable tool compound from HTS + SBDD on ATAD2, CECR2 model J. Med. Chem., May 28, 2020 GlaxoSmithKline, Stevenage, UK
Other molecules you may be interested in
inavolisib
Inavolisib is a PI3Kα isoform-selective kinase inhibitor and monovalent degrader of the mutant p110α catalytic subunit of mutant PI3Kα. The molecule selectively depletes mutant p110α in cancer cells with active RTK (receptor tyrosine kinase) signaling and is in several ongoing or planned Ph. III trials for breast cancer. In October 2024, it received FDA approval for use in combination with palbociclib and fulvestrant to treat adults with endocrine-resistant, PIK3CA-mutated, HR+/HER2- breast cancer. This article explains how it works, how it was discovered, and why it matters.
RMC-9805
RMC-9805 is a first-in-class, covalent KRAS(G12D)(ON) molecular glue inhibitor from Revolution Medicines that uses a cyclophilin A (CypA)-recruiting tricomplex mechanism combined with a finely tuned aziridine covalent handle to inhibit the previously “undruggable” KRAS(G12D) mutant. Read our coverage of the discovery story, disclosed at the AACR 2024 meeting in San Diego, to discover how structural and modeling insights were key to engaging a poorly nucleophilic mutant Asp, how RMC-9805 synergizes with PD-1 inhibitors, and the progress this remarkable compound is making in the clinic.
EOS-984
EOS-984 is an oral, potential first-in-class, highly selective ENT1 inhibitor from iTeos currently in clinical trials for advanced solid tumors. The drug, which was identified through SBDD and optimization of the vasodilator dilazep, targets the immunosuppressive effects of adenosine, which helps tumors evade immune detection. This is an excellent case study on the importance of understanding a molecule's bioactive conformation to reduce the entropy of binding and enhance potency.
IAG933
IAG933 is Novartis’ potential first-in-class small molecule inhibitor of the PPI between YAP/TAZ and TEAD, currently in a Ph. I trial for solid tumors with Hippo pathway alterations. This case study not only highlights a fascinating mechanism of action but also serves as an excellent example of how to leverage structural data to inform hit selection and guide lead optimization, how to employ multiparameter optimization to circumvent cardiotoxicity liabilities, and how to redirect metabolism.
AZ-PRMT5i-1
AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.