An Approved Brain-Penetrant mIDH1/2 Inhibitor with Stunning Efficacy in Glioma
vorasidenib
oral first-in-class dual IDH1/IDH2 inhibitor efficacy in Ph. III for mIDH grade 2 gliomas, 40 mg QD from SBDD of prior mIDH inhibitor N. Engl. J. Med., June 2023 Agios, Cambridge, MA; Servier, Boston, MA
Other molecules you may be interested in
BMS-986397
BMS-986397 is a potential first-in-class CRBN-based selective CK1α molecular glue degrader. CK1α promotes tumor growth by enhancing MDM2 and MDMX degradation of the tumor suppressor p53. Since AML has a low TP53 mutation rate, activating the p53 pathway is a promising approach; however, p53 activators have faced challenges due to hematological toxicities. Targeting CK1α degradation offers an alternative approach. The BMS team sought to develop a CELMoD® for CK1α degradation. This article outlines the discovery of BMS-986397, as presented at the ACS Fall 2024 meeting in Denver, CO.
RMC-9805
RMC-9805 is a first-in-class, covalent KRAS(G12D)(ON) molecular glue inhibitor from Revolution Medicines that uses a cyclophilin A (CypA)-recruiting tricomplex mechanism combined with a finely tuned aziridine covalent handle to inhibit the previously “undruggable” KRAS(G12D) mutant. Read our coverage of the discovery story, disclosed at the AACR 2024 meeting in San Diego, to discover how structural and modeling insights were key to engaging a poorly nucleophilic mutant Asp, how RMC-9805 synergizes with PD-1 inhibitors, and the progress this remarkable compound is making in the clinic.
IAG933
IAG933 is Novartis’ potential first-in-class small molecule inhibitor of the PPI between YAP/TAZ and TEAD, currently in a Ph. I trial for solid tumors with Hippo pathway alterations. This case study not only highlights a fascinating mechanism of action but also serves as an excellent example of how to leverage structural data to inform hit selection and guide lead optimization, how to employ multiparameter optimization to circumvent cardiotoxicity liabilities, and how to redirect metabolism.
CVN293
Cerevance’s CVN293 is an oral, CNS-penetrant, selective inhibitor of potassium efflux-mediated NLRP3-inflammasome activation in microglia for the treatment of neurodegenerative disorders. Cerevance’s NETSseq platform was used to discover a microglia-specific potassium efflux channel, KCNK13, which allows modulation of the NLRP3-inflammasome in the CNS without affecting peripheral innate immunity. Read the full article to discover highlights on the CNS-penetration of highly polar compounds and how particle size can be key to oral bioavailability
HC-7366
HiberCell recently disclosed the discovery of HC-7366, a potential first-in-class, intentionally discovered, orally bioavailable, potent, selective, small-molecule kinase activator of GCN2. HC-7366 has now progressed to Ph. I trials to treat ccRCC and AML. This case study is a fantastic example of how to mitigate CYP3A4 inhibition and improve oral bioavailability via judicious choice of salt formulation.