drughunter.com
6 minute read
Nov. 16, 2023

GNE-7883: Proof-of-Concept for TEAD and RAS Inhibitor Synergy

GNE-7883

pan-TEAD inhibitor preclinical efficacy in xenograft models from TEAD3-YAP HTS of >2M cmpds + opt. Nature, June 5, 2023 Genentech, South San Francisco, CA

drughunter.com
Drug Hunter Team
Loading...

twitterlinkedinemail

Other molecules you may be interested in

HC-7366

HiberCell recently disclosed the discovery of HC-7366, a potential first-in-class, intentionally discovered, orally bioavailable, potent, selective, small-molecule kinase activator of GCN2. HC-7366 has now progressed to Ph. I trials to treat ccRCC and AML. This case study is a fantastic example of how to mitigate CYP3A4 inhibition and improve oral bioavailability via judicious choice of salt formulation.

EOS-984

EOS-984 is an oral, potential first-in-class, highly selective ENT1 inhibitor from iTeos currently in clinical trials for advanced solid tumors. The drug, which was identified through SBDD and optimization of the vasodilator dilazep, targets the immunosuppressive effects of adenosine, which helps tumors evade immune detection. This is an excellent case study on the importance of understanding a molecule's bioactive conformation to reduce the entropy of binding and enhance potency.

BMS-986397

BMS-986397 is a potential first-in-class CRBN-based selective CK1α molecular glue degrader. CK1α promotes tumor growth by enhancing MDM2 and MDMX degradation of the tumor suppressor p53. Since AML has a low TP53 mutation rate, activating the p53 pathway is a promising approach; however, p53 activators have faced challenges due to hematological toxicities. Targeting CK1α degradation offers an alternative approach. The BMS team sought to develop a CELMoD® for CK1α degradation. This article outlines the discovery of BMS-986397, as presented at the ACS Fall 2024 meeting in Denver, CO.

RMC-9805

RMC-9805 is a first-in-class, covalent KRAS(G12D)(ON) molecular glue inhibitor from Revolution Medicines that uses a cyclophilin A (CypA)-recruiting tricomplex mechanism combined with a finely tuned aziridine covalent handle to inhibit the previously “undruggable” KRAS(G12D) mutant. Read our coverage of the discovery story, disclosed at the AACR 2024 meeting in San Diego, to discover how structural and modeling insights were key to engaging a poorly nucleophilic mutant Asp, how RMC-9805 synergizes with PD-1 inhibitors, and the progress this remarkable compound is making in the clinic.

PLX-4545

PLX-4545 is an oral CRBN-based molecular glue degrader of IKZF2 in Ph. I trials. It potentially addresses anti-tumor immunity suppression within the TME, critical in checkpoint blocker resistance. Tumors use IKZF2 to regulate the function of regulatory T cells and inhibit effector T cells. IKZF2 depletion in regulatory T cells enhances the anti-tumor response. The discovery and structural data of PLX-4545 were presented by Kevin Freeman-Cook at the ACS Fall 2024 First-Time Disclosures session in Denver, CO. We are reporting the discovery story and its potential impact on immuno-oncology.