Compound 37: An Inhibitor of the ATG7 E1 Ligase
"compound 37"
ATG7 E1 substrate-assisted covalent inhibitor autophagy inhibition in vivo (150 mg/kg SC) from focused HTS of adenosine sulfamates Bioorg. Med. Chem., Aug. 4, 2020 Takeda, Cambridge, MA
Other molecules you may be interested in
HRO761
Novartis’ HRO761 is an oral allosteric WRN helicase inhibitor, aimed at treating MSI-high and dMMR tumors. This article details the discovery of HRO761 and highlights the importance of selecting appropriate assays during early HTS as well as transferable medicinal chemistry strategies to optimize permeability and solubility through the modulation of LipE, neutral TPSA, chameleonicity, and non-classical zwitterions. It also explores the X-ray structure of HRO761 bound to WRN, how it differentiates from Vividion's VVD-214, its preclinical activity, clinical status, chemical synthesis, and more!
sonrotoclax (BGB-11417)
Sonrotoclax, BeiGene’s clinical-stage, orally bioavailable, next-generation inhibitor, targets both WT and mutated forms of the Bcl-2 protein by binding within a hydrophobic groove, similar to other inhibitors in its class. Explore this case study to see how sonrotoclax was rationally designed to potency against both WT and mutant Bcl-2 and address the limitations of first-generation inhibitors and more!
NDI-101150
NDI-101150 is an oral HPK1 inhibitor discovered by Nimbus Therapeutics and is currently in Ph. I/II clinical trial in advanced solid tumors. HPK1 is a compelling immuno-oncology target due to its critical role in regulating T-cells, B-cells, and dendritic cell-mediated immune responses. HPK1-deficient mice demonstrate enhanced anti-tumor T-cell responses and resistance to tumor growth. In this article, we detail the discovery of NDI-101150, as highlighted by Nimbus at the ACS Fall 2024 First-Time Disclosures session, interim results from the clinic, and more.
BMS-986397
BMS-986397 is a potential first-in-class CRBN-based selective CK1α molecular glue degrader. CK1α promotes tumor growth by enhancing MDM2 and MDMX degradation of the tumor suppressor p53. Since AML has a low TP53 mutation rate, activating the p53 pathway is a promising approach; however, p53 activators have faced challenges due to hematological toxicities. Targeting CK1α degradation offers an alternative approach. The BMS team sought to develop a CELMoD® for CK1α degradation. This article outlines the discovery of BMS-986397, as presented at the ACS Fall 2024 meeting in Denver, CO.
AZ-PRMT5i-1
AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.