ARD-2585: A Bifunctional AR Degrader
ARD-2585
oral CRBN-based androgen receptor degrader preclinical eff. at 10 mpk QD (xenograft) from previously disclosed AR molecule Journal of Medicinal Chemistry University of Michigan
Other molecules you may be interested in
STX-478
STX-478 is a wild-type-sparing, oral, CNS-penetrant, novel allosteric inhibitor of mutant PI3Kα (phosphatidylinositol-3 kinase α) targeting a cryptic pocket near the ATP-binding site. PI3Kα plays a central role in many cancers, and has been recently highlighted in coverage of 2021 Molecule of the Year nominee and PI3Kα degrader inavolisib. Currently approved PI3Kα modulators are limited by their off-target activities on WT PI3Kα and other kinases, leading to significant side effects including hyperglycemia and rash.
AZ-PRMT5i-1
AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.
vorasidenib
Vorasidenib (AG-881) is a brain-penetrant allosteric inhibitor of mutant isocitrate dehydrogenases 1 and 2 (mIDH1/2) from Agios and Celgene that made headlines summer 2023 due to its stunning efficacy for treatment of glioma in patients with mIDH1/2. This Featured Case Study reviews how it was discovered, how it works, and why it matters.
HC-7366
HiberCell recently disclosed the discovery of HC-7366, a potential first-in-class, intentionally discovered, orally bioavailable, potent, selective, small-molecule kinase activator of GCN2. HC-7366 has now progressed to Ph. I trials to treat ccRCC and AML. This case study is a fantastic example of how to mitigate CYP3A4 inhibition and improve oral bioavailability via judicious choice of salt formulation.
BMS-986408
BMS-986408 is an oral, dual DGK ⍺ and ζ inhibitor currently in a Ph. I/II trial in patients with solid tumors. The compound was identified stemming from a phenotypic screening approach, and subsequent target deconvolution revealed DGK to be the target. If approved, it would be a first-in-class intracellular checkpoint inhibitor of DGK. This is an excellent case study on how to overcome a DILI risk associated with BSEP inhibition, as well as how to improve solubility and PK properties of your compounds through the introduction of polarity, reduction of aromatic rings, and increase in f(sp3).