drughunter.com
8 minute read
Apr. 25, 2024

TNG462: Selective Targeting of the PRMT5:MTA Complex for MTAP-Deleted Cancers

TNG462

oral, MTA-cooperative PRMT5 inhibitor Ph. I for MTAP-deleted solid tumors optimized HTS hit ACS Fall 2023 meeting presentation Tango Therapeutics, Boston, MA

Author:  
Reviewer:  
Loading...

twitterlinkedinemail

Other molecules you may be interested in

RMC-9805

RMC-9805 is a first-in-class, covalent KRAS(G12D)(ON) molecular glue inhibitor from Revolution Medicines that uses a cyclophilin A (CypA)-recruiting tricomplex mechanism combined with a finely tuned aziridine covalent handle to inhibit the previously “undruggable” KRAS(G12D) mutant. Read our coverage of the discovery story, disclosed at the AACR 2024 meeting in San Diego, to discover how structural and modeling insights were key to engaging a poorly nucleophilic mutant Asp, how RMC-9805 synergizes with PD-1 inhibitors, and the progress this remarkable compound is making in the clinic.

BMS-986397

BMS-986397 is a potential first-in-class CRBN-based selective CK1α molecular glue degrader. CK1α promotes tumor growth by enhancing MDM2 and MDMX degradation of the tumor suppressor p53. Since AML has a low TP53 mutation rate, activating the p53 pathway is a promising approach; however, p53 activators have faced challenges due to hematological toxicities. Targeting CK1α degradation offers an alternative approach. The BMS team sought to develop a CELMoD® for CK1α degradation. This article outlines the discovery of BMS-986397, as presented at the ACS Fall 2024 meeting in Denver, CO.

elunonavir

Despite the remarkable emergence of HAART in the 1990s, the fight against HIV infection is by no means finished. At the ACS Fall 2024 meeting in Denver, CO, Gilead Sciences presented the structure and discovery story of elunonavir (GS-1156), a novel HIV protease inhibitor with remarkable metabolic stability and a human half-life exceeding two weeks. Based on BMS’ atazanavir, the compound incorporates structural elements inspired by Gilead’s HCV NS5A inhibitor program which led to ledipasvir, as “stabilizer” motifs to avoid the extensive CYP metabolism seen in current inhibitors.

NVP-DFV890

Novartis' NLRP3 inhibitor, NVP-DFV890, features a unique sulfonimidamide motif designed to reduce hydrolysis relative to traditional sulfonylureas. This potent compound, with promising PK in humans, is advancing through multiple clinical studies, including Ph. II trials for coronary heart disease and knee osteoarthritis. Presented by Angela Mackay at the EFMC-ISMC 2024 joint conference in Rome, this overview covers NVP-DFV890's discovery, as well as its preclinical PK and PD data.

inavolisib

Inavolisib is a PI3Kα isoform-selective kinase inhibitor and monovalent degrader of the mutant p110α catalytic subunit of mutant PI3Kα. The molecule selectively depletes mutant p110α in cancer cells with active RTK (receptor tyrosine kinase) signaling and is in several ongoing or planned Ph. III trials for breast cancer. In October 2024, it received FDA approval for use in combination with palbociclib and fulvestrant to treat adults with endocrine-resistant, PIK3CA-mutated, HR+/HER2- breast cancer. This article explains how it works, how it was discovered, and why it matters.