drughunter.com
< 1 minute read
Dec. 20, 2021

Compound 1: a RET inhibitor

compound 1

oral RET kinase inhibitor effective in tumor xenograft model from scaffold hopping & optimization ACS Medicinal Chemistry Letters Novartis Genomics Institute

drughunter.com
Drug Hunter Team
Loading...

twitterlinkedinemail

Other molecules you may be interested in

BBO-8520

BridgeBio’s BBO-8520 is a selective, covalent KRAS(G12C) inhibitor which differentiates itself from the pack by engaging the (ON) state of the protein, potentially conferring increased clinical benefit in KRAS(G12C)-driven cancers, including overcoming resistance to current treatments. Disclosed at the 2024 AACR Annual Meeting in San Diego, is currently in a Ph. I trial in patients with advanced non-small-cell lung cancer. This article covers the structure, mechanism of action and preclinical efficacy that marks this compound out as one to watch.

AZ-PRMT5i-1

AZ-PRMT5i-1 is an orally bioavailable MTA-cooperative PRMT5 inhibitor that specifically targets MTAP-deleted cancers and is structurally related to AZ’s clinical candidate, AZ3470. This case study is an excellent example of utilizing bioisosteric replacements for polar guanidine headgroups, rigidifying scaffolds through spirocyclization to reduce rotatable bonds, and leveraging fluorine atoms beyond simply blocking metabolic soft spots.

vorasidenib

Vorasidenib (AG-881) is a brain-penetrant allosteric inhibitor of mutant isocitrate dehydrogenases 1 and 2 (mIDH1/2) from Agios and Celgene that made headlines summer 2023 due to its stunning efficacy for treatment of glioma in patients with mIDH1/2. This Featured Case Study reviews how it was discovered, how it works, and why it matters.

RMC-9805

RMC-9805 is a first-in-class, covalent KRAS(G12D)(ON) molecular glue inhibitor from Revolution Medicines that uses a cyclophilin A (CypA)-recruiting tricomplex mechanism combined with a finely tuned aziridine covalent handle to inhibit the previously “undruggable” KRAS(G12D) mutant. Read our coverage of the discovery story, disclosed at the AACR 2024 meeting in San Diego, to discover how structural and modeling insights were key to engaging a poorly nucleophilic mutant Asp, how RMC-9805 synergizes with PD-1 inhibitors, and the progress this remarkable compound is making in the clinic.

VVD-214/RO7589831

VVD-214/RO7589831 is an oral covalent, reversible, and allosteric inhibitor of WRN helicase discovered by the San Diego-based biotech Vividion Therapeutics and being developed by Roche for tumors marked by microsatellite instability and/or mismatch repair deficiency. Vividion has utilized its chemoproteomics platform to discover and develop novel treatment options for oncology targets. The structure and initial preclinical pharmacology data for VVD-214 were recently disclosed at the AACR Annual Meeting 2024 in San Diego. VVD-214 is currently being evaluated in a Ph. I trial.