ARV-471: an Oral ER Degrader for ER+/HER2- Breast Cancer
Arvinas ER Chimeric Degrader
CRBN-based heterobifunctional ER degrader oral Ph. II candidate for ER+/HER2- BC from ER ligand and CRBN ligand ARV-471 Arvinas, New Haven, CT
Other molecules you may be interested in
inavolisib
Inavolisib is a PI3Kα isoform-selective kinase inhibitor and monovalent degrader of the mutant p110α catalytic subunit of mutant PI3Kα. The molecule selectively depletes mutant p110α in cancer cells with active RTK (receptor tyrosine kinase) signaling and is in several ongoing or planned Ph. III trials for breast cancer. In October 2024, it received FDA approval for use in combination with palbociclib and fulvestrant to treat adults with endocrine-resistant, PIK3CA-mutated, HR+/HER2- breast cancer. This article explains how it works, how it was discovered, and why it matters.
VVD-130037
KEAP1 inhibition/NRF2 activation has been hotly pursued in recent years for immunology indications; however, in oncology, NRF2 degradation has been posited as a novel therapeutic mechanism for specific cancers. Vividion has already disclosed work on covalent KEAP1 inhibitors, but at the recent ACS Fall 2024 meeting, the structure and discovery story of their clinical oral covalent activator of KEAP1 were disclosed, identified through careful analysis of the data from their inhibitor screen.
ARV-393
Arvinas’ ARV-393 is an orally bioavailable PROTAC that degrades BCL6 via CRBN-mediated ubiquitination and proteasomal degradation intended for the treatment of NHL. At the AACR San Diego 2024 meeting, Arvinas disclosed the structure and discovery story of this molecule, which exhibits first-in-class potential. This article covers the key SAR observations that led to the invention of this orally bioavailable PROTAC®, its performance in a triple-hit, high-grade BCL and R-CHOP-resistant cell line, and why sustaining BCL6 knockdown beyond 24 hours was critical for the success of this program.
STX-478
STX-478 is a wild-type-sparing, oral, CNS-penetrant, novel allosteric inhibitor of mutant PI3Kα (phosphatidylinositol-3 kinase α) targeting a cryptic pocket near the ATP-binding site. PI3Kα plays a central role in many cancers, and has been recently highlighted in coverage of 2021 Molecule of the Year nominee and PI3Kα degrader inavolisib. Currently approved PI3Kα modulators are limited by their off-target activities on WT PI3Kα and other kinases, leading to significant side effects including hyperglycemia and rash.
BMS-986408
BMS-986408 is an oral, dual DGK ⍺ and ζ inhibitor currently in a Ph. I/II trial in patients with solid tumors. The compound was identified stemming from a phenotypic screening approach, and subsequent target deconvolution revealed DGK to be the target. If approved, it would be a first-in-class intracellular checkpoint inhibitor of DGK. This is an excellent case study on how to overcome a DILI risk associated with BSEP inhibition, as well as how to improve solubility and PK properties of your compounds through the introduction of polarity, reduction of aromatic rings, and increase in f(sp3).