JNJ-63576253 / TRC-253
oral WT and F877L mut. AR inhibitor completed Ph. I/II trial in mCPRC no hepatotox. vs. bioactivated prior lead J. Med. Chem., Jan. 20, 2021 Janssen R&D, Spring House, PA
Other molecules you may be interested in
VVD-130037
KEAP1 inhibition/NRF2 activation has been hotly pursued in recent years for immunology indications; however, in oncology, NRF2 degradation has been posited as a novel therapeutic mechanism for specific cancers. Vividion has already disclosed work on covalent KEAP1 inhibitors, but at the recent ACS Fall 2024 meeting, the structure and discovery story of their clinical oral covalent activator of KEAP1 were disclosed, identified through careful analysis of the data from their inhibitor screen.
NT-0796
NT-0796 is NodThera's pro-drug inhibitor of the NLRP3 inflammasome. NT-0796 is currently in a Ph. Ib/IIa trial in obese individuals at risk of developing atherosclerotic cardiovascular diseases. NT-0796 has the potential to reduce neuroinflammation in Parkinson’s disease. The NLRP3 inflammasome has emerged as a hot target due to its connection to Alzheimer’s disease, Parkinson’s disease, gout, and other diseases. Here is a detailed review of the role of NLRP3 inhibition in treating atherosclerosis, how NT-0796 was identified, and what makes it special, clinical development, and more.
PLX-4545
PLX-4545 is an oral CRBN-based molecular glue degrader of IKZF2 in Ph. I trials. It potentially addresses anti-tumor immunity suppression within the TME, critical in checkpoint blocker resistance. Tumors use IKZF2 to regulate the function of regulatory T cells and inhibit effector T cells. IKZF2 depletion in regulatory T cells enhances the anti-tumor response. The discovery and structural data of PLX-4545 were presented by Kevin Freeman-Cook at the ACS Fall 2024 First-Time Disclosures session in Denver, CO. We are reporting the discovery story and its potential impact on immuno-oncology.
ARV-393
Arvinas’ ARV-393 is an orally bioavailable PROTAC that degrades BCL6 via CRBN-mediated ubiquitination and proteasomal degradation intended for the treatment of NHL. At the AACR San Diego 2024 meeting, Arvinas disclosed the structure and discovery story of this molecule, which exhibits first-in-class potential. This article covers the key SAR observations that led to the invention of this orally bioavailable PROTAC®, its performance in a triple-hit, high-grade BCL and R-CHOP-resistant cell line, and why sustaining BCL6 knockdown beyond 24 hours was critical for the success of this program.
BMS-986397
BMS-986397 is a potential first-in-class CRBN-based selective CK1α molecular glue degrader. CK1α promotes tumor growth by enhancing MDM2 and MDMX degradation of the tumor suppressor p53. Since AML has a low TP53 mutation rate, activating the p53 pathway is a promising approach; however, p53 activators have faced challenges due to hematological toxicities. Targeting CK1α degradation offers an alternative approach. The BMS team sought to develop a CELMoD® for CK1α degradation. This article outlines the discovery of BMS-986397, as presented at the ACS Fall 2024 meeting in Denver, CO.